On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

نویسنده

  • A. E. Costley
چکیده

The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτE, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τE are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτE becomes almost independent of size; rather it depends mainly on the fusion power, Pfus. In consequence, the fusion power gain, Qfus, a parameter closely linked to nTτE is also independent of size. Hence, Pfus and Qfus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτE is inversely dependent on the normalised beta, βN; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the power and size of tokamak fusion pilot plants and reactors

It is generally accepted that the route to fusion power involves large devices of ITER scale or larger. However, we show, contrary to expectations, that for steady state tokamaks operating at fixed fractions of the density and beta limits, the fusion gain, Qfus, depends mainly on the absolute level of the fusion power and the energy confinement, and only weakly on the device size. Our investiga...

متن کامل

Reliability and Availability Analysis of Fusion Power Plants

Major efforts are underway to develop fusion energy for use in electric power production in the furture. While fusion reactor concepts are being developed, appropriate attention must be given to problems relvant to the utility requirements which are likely to be encountered in the commercialization phase. In this paper the expected fusion plant availability is assessed in detail due to the impo...

متن کامل

Current drive at plasma densities required for thermonuclear reactors.

Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required fo...

متن کامل

Alternative Fusion Reactors as Future Commercial Power Plants

Alternative reactor based on a field-reversed configuration (FRC) has advantages of the cylindrical geometry, the open field line geometry (direct energy conversion (DEC) of the charged-particle flow), and high � (plasma pressure/magnetic-field pressure). This paper aims to evaluate the attractiveness of a low radioactive FRC fusion core. Analysis of a conceptual deuterium helium-3 (D-He) fusio...

متن کامل

Burning Plasma Simulation and Environmental Assessment of Tokamak, Spherical Tokamak and Helical Reactors

Reference 1-GWe D-T reactors; tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors, are designed using PEC (Physics Engineering Cost) code, and thier plasma behaviors with Internal Transport Barrier (ITB) operations are analyzed using TOTAL (Toroidal Transport Analysis Linkage) code, which clarifies the requirement of deep penetration of pellet fueling to realize steady-state advanced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016